Table – 6: Course Structure for M.Sc. (Maths) Degree Programme

Sem.	Sub.	Subject	Subject Title	Contact	Credits
	No.	Status		Hrs./	
				Week	
(1)	(2)	(3)	(4)	(5)	(6)
	1	Core - 1	Algebra - I	6	4
Ι	2	Core - 2	Analysis – I	6	4
	3	Core - 3	Analytic Number Theory	6	4
	4	Core - 4	Ordinary Differential Equations	6	4
	5	Core - 5	Numerical Analysis	6	4
		_ I	Subtotal	30	20
	6	Core - 6	Algebra II	5	4
	7	Core - 7	Analysis II	5	4
	8	Core - 8	Classical Mechanics	5	4
II	9	Core - 9	Differential Geometry	5	4
	10	Core - 10	Graph Theory	5	4
	11	Elective - 1	 Programming With C++ Discrete Mathematics Partial Differential Equations 	5	3
			Subtotal	30	23

(with effect from the academic year 2017-2018 onwards)

			Total	120	90
			Subtotal	30	24
	22	Core - 20	Project	8	8
	21	Core - 19		5	4
IV	20	Core - 18		5	4
	19	Core - 17		6	4
	18	Core - 16		6	4
			Subtotal	30	23
	17	Elective - 2		5	3
III	16	Core - 15	Research Methodology	5	4
	15	Core - 14		5	4
	14	Core - 13		5	4
	13	Core - 12		5	4
	12	Core - 11		5	4

For the Project, flexible credits are b/w 5-8 & Hoursper week are b/w 10 - 16.Total number of credits ≥ 90 :90Total number of Core Courses:20 (19 T + 1 Prj.)Total number of Elective Courses:2Total hours:120

SEMESTER I

1.1 Paper 1: ALGEBRA - I

Text Book:	Topics in Algebra , I.N. Herstein, 2 nd Edition, Wiley India Edition.		
Unit I:	A Counting Principle – Normal Subgroups and quotient groups –		
	Homomorphisms.		
	Sections: 2.5, 2.6, 2.7.		
Unit II:	Automorphisms – Cayley's theorem – Solvable groups.		
	Sections: 2.8, 2.9. Supplementary Problems : 10 -17.		
Unit III:	Permutation groups – Another counting principle. Sections: 2.10, 2.11.		
Unit IV:	Sylow's theorems. Sections: 2.12.		
Unit V:	Direct products – Finite abelian groups.		
	Sections: 2.13, 2.14.		

1.2 Paper 2: ANALYSIS – I

Text Book:	Principles of Mathematical Analysis, Walter Rudin, Third Edition, McGraw Hil
	International Book Company.

Unit I: Metric spaces – Compact sets – Perfect sets – Cantor sets – Connected sets .Chapter II : Sections 2.15 to 2.47.

Exercise Problems: Chapter II : 5 -14, 20.

Unit II: Convergence sequences – Sub sequences – Cauchy sequence - Lower and Upper limits – Some special sequences – Series – Series of non negative terms – The number e.

Chapter III : Sections 3.1 to 3.32.

Exercise Problems: Chapter III : 1 - 8.

Unit III: Root test and Ratio test – Power series – Summation by parts – Absolute convergence – Addition and multiplication of series.

Chapter III : Sections 3.33 to 3.51.

Exercise Problems : Chapter III : 9, 11 - 13.

Unit IV: Continuity – Limit of functions – Continuous functions – Continuity and compactness – Continuity and connectedness – Discontinuous – Monotonic functions.
 Chapter IV : Sections 4.1 to 4.31.

Exercise Problems : Chapter IV: 1 – 5, 14,15.

Unit V: Differentiation – Derivative of a real function – Mean value theorems – The continuity of derivatives – L'Hospital Rule – Derivatives of higher order – Taylor's theorem.

Chapter V : Sections 5.1 to 5.15.

Exercise Problems : Chapter V : 1 - 5 and 12.

1.3 Paper 3: ANALYTIC NUMBER THEORY

Text Book:	Introduction to Analytic Number Theory – Tom M. Apostol – Springer		
	International Student Edition.		
Unit I:	The fundamental Theorem of Arithmetic.		
	Chapter 1 and Exercise Problems: 1-11.		
Unit II:	Arithmetic functions.		
	Chapter 2: Sections 2.1 -2.8.		
	Exercise problems: Chapter 2: (1-6).		
Unit III:	Multiplicative functions and Dirichlet Multiplication.		
	Sections 2.9 – 2.14.		
	Exercise problems: Chapter 2: (21-23, 25,26).		
Unit IV:	Averages of Arithmetical functions.		
	Chapter 3: (1-9).		
	Exercise problems: Chapter 3: (1-4).		
Unit V:	Partial sums of Dirichlet product, Chebyshev's functions – equivalent forms of prime number theorem.		
	Chapter 3: Sections: 3.10, 3.11 and Chapter 4: 4.1 – 4.5.		
	Exercise problems: Chapter 4: (3,4,5,8,9,10).		

1.4 Paper 4: ORDINARY DIFFERENTIAL EQUATIONS

Text Book:	Differential Equations with application and historical notes, G.F. Simmons, Second Edition, Tata McGraw Hill.
Unit I:	Second Order linear equations : General solution of the Homogeneous equations – The use of a known solution to find another – The method of variation of parameters. Sections: $14 - 16$.
Unit II:	Power series solutions: A review of power series solutions – Series solution of first order equations – Second order equations – Ordinary points. Sections: 26 – 28.
Unit III:	Regular singular points – Legendre polynomials- Properties of Legendre polynomials Sections: 29, 30, 44, 45.
Unit IV:	Bessel functions – The Gamma functions – Properties of Bessel functions. Sections: 46, 47.
Unit V:	Linear systems : Homogeneous linear systems with constant coefficients Sections: 55, 56.

1.5 Paper 5: NUMERICAL ANALYSIS

Text Book: Numerical Methods, S. Arumugam and others, Scikech(2001).

Unit I: Interpolation : Newton's Interpolation Formula – Central difference Interpolation Lagrange's Interpolation formula – Divided differences - Newton's Divided differences formula – Inverse Interpolation – Hermit's Interpolating Polynomial. Chapter 7: Sections 7.1 to 7.7. Unit II: Numerical differentiation – Derivatives using Newton's forward, backward, central difference formulae Chapter 8: Sections 8.1 to 8.3. Unit III: Numerical Integration -Gaussian Quadrature formula -Numerical evaluation of double integrals. Chapter 8: Sections 8.5 to 8.7. Unit IV: Numerical solutions of ordinary differential equations – Taylor's series Method – Picard's Method – Euler's Method – Runge Kutta Method.

Chapter 10: Sections 10.1 to 10.4.

Unit V: Predictor corrector Method – Milnes Method – Adams-Bashforth Method.

Chapter 10: Sections 10.5 to 10.7.

SEMESTER II

2.1 Paper 6: ALGEBRA II

- **Text book 1:** Topics in Algebra, I.N. Herstein, 2nd edition, Wiley Student edition.
- **Text book 2:** A First Course in Rings and Ideals, David M. Burton, Addison Wesley Publishing Company.
- **Unit I:** Ring Homomorphisms Ideals and Quotient rings More ideals and Quotient rings The field of Quotients of an integral domain.

Text book 1: **Sections:** 3.3 – 3.6.

Unit II: Euclidean rings - A particular Euclidean ring.

Text book 1: Sections: 3.7 and 3.8.

Unit III: Polynomial rings – Polynomials over rational field – Polynomial rings over commutative rings.

Text book 1: Sections: 3.9 – 3.11.

Unit IV: Certain radicals of a ring – Jacobson radical of a ring – Semi simple ring – nil radical – Primary ring.

Text book 2: Chapter 8: Definition 8.1 – Theorem 8.15.

Unit V: Quasi regular – J-semi simple – Direct sum of rings.

Text book 2: Chapter 8: Theorem 8.16 – Theorem 8.18 and Chapter 10.

2.2 Paper 7: ANALYSIS II

Text Book:	Principles of Mathematical Analysis, Third Edition, Walter Rudin – McGraw Hill International Book Company.
Unit I:	Definition and Properties of Integral – Integration and Differentiation. Chapter 6: Section: 6.1 – 6.22. Exercise Problems: Chapter 6: 1, 2, 4, 5, 10, 11.
Unit II:	Integration of vector valued functions – Rectifiable arcs, Sequence and Series of functions: Discussion of main problem – Uniform Convergence – Uniform Convergence and Continuity. Chapter 6: Section: $6.23 - 6.27$ & Chapter 7: Section: $7.1 - 7.15$. Exercise Problems: Chapter 7: 1, 4, 6 and 7.
Unit III:	Uniform Convergence and Integration – Uniform Convergence and Differentiation – Equicontinuous families of functions. Chapter 7: Section: 7.16 – 7.25.
Unit IV:	The Stone Weierstrass Theorem - Power Series. Chapter 7: Section: 7.26–7.33 and Chapter 8: Section: $8.1 - 8.5$. Exercise Problems: Chapter 8: $1 - 5$.
Unit V:	The algebraic completeness of the complex field – Fourier Series – The Gamma function. Chapter 8: Section: 8.8 – 8.22 Exercise Problems: Chapter 8: 13, 14, 15.

2.3 Paper 8: CLASSICAL MECHANICS

Text Book: Classical Mechanics, H. Goldstein, second edition, Addison Wesley India edition. Unit I: Mechanics of particle – Mechanics of a system of particles constraints. Section 1-3, Problems: 2, 4 and 5. Chapter 1: Unit II: D'Alembert's Principle and Lagrange's equation – Velocity dependent potentials and dissipation functions – Simple applications of Lagrangian formulation. Chapter 1: Section 4, 5 and 6, Problems: 11, 13 and 17. Unit III: Hamilton's Principle - Some techniques of Calculus of Variation - Derivation of Lagrange's equations from Hamilton's principle – Extension of Hamilton principle to non-holonomic systems. Chapter 2: **Section** 1 - 4, Problems: 1 - 3. Unit IV: Reduction to the equivalent one-body problem – The equations of motion and first Integrals - The equivalent one dimensional problem and classification of orbits -The virial theorem. Chapter 3: Section 1 - 4, Problems: 2 - 4. Unit V: The differential equation for the orbit and integrable power law potentials – The

Unit V: The differential equation for the orbit and integrable power law potentials – The Kepler problem: Inverse square law of force – The motion in time in the Kepler problem – The Laplace – Runge – Lenz vector.

Chapter 3: Section 5, 7 - 9.

2.4 Paper 9: DIFFERENTIAL GEOMETRY

Text book:	An Introduction to Differential Geometry, T.J.Willmore, Oxford University Press, (17 th Impresssion), New Delhi, 2002, (Indian Print).
Unit I:	The theory of space curves – Definitions , Arc length – Tangent – Normal and Binormal – Curvature and Torsion. Chapter 1: Section: $1.1 - 1.5$.
	Problems: Chapter 1: Miscellaneous Exercise I: 1 – 3.
Unit II:	Contact between curves and surfaces – Tangent Surface – Involutes and evolutes – Helices Chapter 1: Section: 1.6, 1.7 and 1.9 Publishing Chapter 1: Missellaneous Exercise 1: 8 – 12
	Problems: Chapter 1: Miscellaneous Exercise I: 8 – 12.
Unit III:	Definition of a surface – Curves on a surface – Helicoids – Metric – Direction Coefficients.
	Chapter 2: Section: 2.1, 2.2, 2.4, 2.5, 2.6
	Problems: Chapter 2: Miscellaneous Exercise II : 1 – 4.
Unit IV:	Families of curves – Geodesics , Canonical geodesic equation, Normal Property of geodesics (Christoffel symbols not included). Chapter 2: Section: $2.7, 2.10 - 2.12$
	Problems: Chapter 2: Miscellaneous Exercise II: 6, 7, 8.
Unit V:	Geodesic curvature, The Second Fundamental form – Principal Curvature – Lines of Curvature (Dupin's indicatrix not included). Chapter 2: Section: 2.15, Chapter 3: Section: 3.1 – 3.3.
	Problems: Miscellaneous Exercise III: $1-5$.

2.5 Paper 10: GRAPH THEORY

Text Book:	Graph Theory with applications, H.J.A. Bondy and Murthy, The MacMillan Press Limited.
Unit I:	Trees - Connectivity – Blocks. Chapter 2: Section: $2.1 - 2.4$. and Chapter 3: Section $3.1 - 3.3$
Unit II:	Euler tour – Hamilton cycle – Applications. Chapter 4: Section: 4.1 – 4.3
Unit III:	Matching – Perfect Matching – Edge colouring. Chapter 5: Section: $5.1 - 5.3$ & Chapter 6 : Sec : 6.1 & 6.2 .
Unit IV:	Independent sets – Cliques. Chapter 7: Section: 7.1 – 7.3.
Unit V:	Vertex Colouring. Chapter 8: Section: 8.1 – 8.5.

2.6 Elective(Any One)

2.6.1 PROGRAMMING WITH C++

Text Book:	Object oriented Programming with C++ (Fourth Edition), E.Balagurusamy, TMH Publications.
Unit I:	Tokens, Expressions and Control Structures.
	Chapter: 3
	Programming Exercises: 3.1, 3.3, 3.5, 3.7, 3.9, 3.10
Unit II:	Functions in C++, Classes & Objects.
	Chapter : 4 & 5
	Programming Exercises: 4.1, 4.2, 4.5, 4.7, 5.2, 5.5
Unit III:	Constructors and destructors, Operator overloading & Type conversions.
	Chapter: 6 & 7
	Programming Exercises: 6.2, 7.2, 7.3, 7.4
Unit IV:	Inheritance – Extending classes, Pointers, Virtual Functions & Polymorphism.
	Chapter: 8 & 9
	Programming Exercises: 9.1, 9.2
Unit V:	Unformatted I/O Operations, Formatted Console I/O Operations, Managing Output with Manipulators, Working with Files.
	Chapter: 10.4, 10.5, 10.6, 11
	Programming Exercises: 10.1, 10.3, 11.1, 11.2

2.6.2 DISCRETE MATHEMATICS

Text Book:	Discrete Mathematics and its Applications (Sixth Edition) – Kenneth H. Rosen. WCB/ McGraw Hill Publications
Unit I:	Propositional Logic – Propositional equivalence - Predicates and quantifiers.
	Sections: 1.1 - 1.3.
	Problems: Section 1.1(1 - 38), Section 1.2(1 - 35) and
	Section 1.3(1 – 34)
Unit II:	The Basics of counting – The Pigeonhole principle – Generalized permutation and combination.
	Sections: 5.1, 5.2 and 5.5
	Problems: Section 5.1(1 - 40), Section 5.2(1 - 22) and
	Section 5.5(1 – 9)
Unit III:	Relation and their properties – n-ary relations and their applications – representing relation – closures of relations. Sections: 7.1 – 7.4 except Warshall's algorithm Problems: Section 7.1(All exercise problems), Section 7.2(1 - 27),
	Section 7.3(1 – 22) and Section 7.4(1 - 22)
Unit IV:	Boolean functions – Representing Boolean functions. Sections: 10.1 and 10.2 Problems: All exercise problems.
Unit V:	Logic Gates – Minimization.
	Sections: 10.3 and 10.4 Problems: All exercise problems.

2.6.3 PARTIAL DIFFERENTIAL EQUATIONS

- **Text Book:** Elements Of Partial Differential Equations, IAN N. SNEDDON, McGraw Hill, New Delhi,1983.
- **Unit I:** Methods of Solution of $\frac{dx}{p} + \frac{dy}{q} + \frac{dz}{R}$ Pfaffian Differential Forms and Equations - Solution of Pfaffian Differential Equations in three variables.

Chapter 1: Section: 3, 5 and 6 (all problems)

Unit II : Partial Differential equations - Origins of first order Partial Differential equations - Linear equations of the first order - Integral surfaces passing through a given curve.

Chapter 2: Section: 1,2,4 and 5 (all problems)

Unit III: Cauchy's Method of Characteristics - Compatible systems of First order Equations - Charpit's Method.

Chapter 2: Section: 8 - 10 (all problems)

Unit IV: Second order equations in Physics - Linear Partial Differential equations with Constant Coefficients.

Chapter 3: Section: 2 and 4 (all problems)

Unit V: Characteristics of Equations in three variables - Separation of variables.

Chapter 3: Section: 7 and 9 (all problems)